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Abstract No reference materials are currently available

to study thermoanalytical kinetic methods, apparatus, or

software. The ASTM International Committee E27 on

Hazard Potential of Chemicals seeks to identify possible

calorimetric reference materials for evaluating kinetic

parameters, including activation energy (E), log pre-expo-

nential factor (log Z), and reaction orders (m and n), as well

as reaction enthalpy (H). Six candidate materials are

examined including di-tertiary-butyl peroxide (DTBP),

trityl azide, azobenzene, azobisisobutyronitrile (ABIN),

cumene hydroperoxide (CHP), and phenytetrazolthiol. No

single material appears to meet all needs. The merits and

applicability of each candidate are discussed and recom-

mended kinetic reference values are presented.
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Introduction

Quality initiatives, such as ISO16949, require the calibra-

tion of apparatus using certified and traceable reference

materials [1]. In calorimetry, standard methods and refer-

ence materials exist for the calibration of each signal of

time, temperature, and enthalpy [2–4]. The situation is less

clear when it comes to calorimetric applications that

involve more complex mathematical treatments such as the

study of kinetics.

There are several kinetic methods available for thermal

analysis users including the Ozawa–Flynn–Wall [5–7],

Borchardt and Daniels [8, 9], Sestak Berggren [10–12], and

Vyazovkin [13] methods for which commercially available

software exists. Each of these methods has its own appli-

cation area and none of these methods is applicable to all

the situations.

Kinetics is the study of the dependence of a chemical

reaction on time and temperature. Kinetic methods provide

tools for estimating performance in experimental (tem-

perature or time) regions that are difficult to reach [14]. For

example, engineers may be required to design for lifetimes

on the order of 40 years. Kinetic models help to estimate

performance into this far-distant future.

The general kinetic equation, known as the Sestak–

Berggren or autocatalytic equation [10–12] has the form of

da=dt ¼ am ð1� aÞnZ exp �E=RTð Þ ð1Þ

where da/dt is the rate of reaction, a the fraction left to

reaction (1 to 0), Z the pre-exponential factor (in s-1), exp

is the natural logarithm base e raised to the power of (�),
R the molar gas constant (=8.32 JK-1 mol-1), E is the

activation energy (in J mol-1), T the absolute temperature

(in K), and m and n are reaction orders (dimensionless).

Equation 1 reduces to the more familiar nth order general

rate equation when m equals zero.

da=dt ¼ ð1� aÞnZ exp �E=RTð Þ ð2Þ

The study of kinetics, then, involves the determination

of the values for activation energy (E), ln or log (pre-

exponential factor) (log Z), and reaction orders (m and

n) for a particular reaction. Of these, activation energy is

the most important, as it predicts how the reaction rate will

change with temperature and is sometimes determined

alone, as in ‘‘model free’’ kinetic methods. Although not a

specific kinetic parameter, the enthalpy of reaction (DH) is

often additionally determined in kinetics studies.
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In practice, the four kinetic parameters (E, log Z, m, and

n) are simultaneously determined for a set of data using

multiple linear regression and the logarithmic form of

Eq. 1 shown in Eq. 3.

lnðda=dtÞ ¼ m lnðaÞ þ n lnð1� aÞ þ ln Zð Þ � E=RT

ð3Þ

Because the four kinetic parameters are determined

simultaneously, a change in one determined value will

affect the values determined for the other three. In

particular, E and log (Z) are known to be related to each

other by the kinetic compensation effect [15, 16]. The

difficulty of determining four parameters simultaneously to

high precisions is reduced by simplifying the number of

determined parameters, usually by fixing values for m and

n (this is called assigning a kinetic model). Experience

shows that in thermal analysis, it is often reasonable to

assume first-order reactions (i.e., m = 0 and n = 1).

To validate kinetic methods, the International Confer-

ence on Thermal Analysis and Calorimetry (ICTAC) has

taken a mathematical approach. They chose to develop

several sets of synthetic data modeled upon real systems

[17]. One such example is the ‘‘standard’’ experimental

data (free from noise and ideally suited for data analysis)

for the single-step decomposition of calcium carbonate.

ICTAC used this synthetic data to test several kinetic

methods [17]. The synthetic calcium carbonate decompo-

sition showed a 16% relative standard deviation for acti-

vation energy, a 25% relative standard deviation for log

(pre-exponential factor), and a 39% relative standard

deviation for the reaction order. These values provide inter-

method reliability as the same data sets are examined by

several kinetic methods.

The imprecision of kinetic values within a method is

demonstrated in interlaboratory tests where the same

material is treated by different laboratories using the same

procedure. Interlaboratory tests show the between-labora-

tory reproducibility to be about 10% for activation energy

and log (pre-exponential factor) and about 22% or the

reaction order [12].

This inter-method reliability and intra-method repro-

ducibility argue for a real world test material to be avail-

able for validation of methods, instruments, and software.

That is, a kinetic reference material is needed.

Search for kinetic reference materials

The modern search for kinetic reference materials began in

the 1970s when Allan Duswalt and Jimmy McCarty of

Hercules Research looked for a suitable reference material

during their development of ASTM International standard

E 698, a variable heating rate method that assumes a first-

order reaction [18]. The decomposition of peroxides (R–O–

O–R) and azides (R–N=N=N) was suggested as likely

candidates as they generally are clean, first-order reactions.

The selection of acceptable reference materials depends

upon a series of requirements. The first of these is that the

material must be readily available in consistent, high (or at

least known) purity. In practice, this means that the mate-

rial should be commercially available. Second, the desired

measurement parameters must be well established with

known and acceptable uncertainties. The reference material

must be stable over time (so that it will be available for

years once characterized) and be non-toxic and safe for

transportation. Finally, it is desirable that the material be

universally applicable to all methods, software, and

instruments. The challenge with candidate kinetic refer-

ence materials is that no single material has been found to

satisfy all of these criteria. We are faced, then, with

reducing our expectations.

Di-t-Butyl peroxide (DTBP) (CAS: 110-05-4)

Di-t-butyl peroxide has been more studied as a kinetic

reference than any other material. The decomposition is a

smooth, continuous, and well-behaved first-order reaction.

More than 30 kinetic studies are available in the literature

(see Table 1). These studies provide sound kinetic values

with precision for activation energy, enthalpy of reaction,

pre-exponential factor, and reaction order. DTBP is com-

mercially available in high concentration1,2,3,4 and is non-

toxic with an LD50 (oral, rat) of 25,000 mg/kg (see foot-

note 3). Lethal dose for 50% of the population of rats by

oral intake is 25,000 mg/kg of body weight. Materials with

LD50 \ 500 mg/kg are considered to be ‘‘toxic’’ [19].

These desirable qualities are mitigated by its boiling tem-

perature of 110 �C making it unsuitable for the variable

heating rate DSC methods.

Trityl azide (CAS: 14309-25-2)

Trityl azide (also known as azidotriphenylmethane) is a

solid material with a melting temperature about 61 �C that

possesses a clean ‘‘text book’’ shaped decomposition pro-

file suitable for the Borchardt and Daniel method. It has

been used in a number of interlaboratory tests for kinetic

methods [20, 21]. Outside of the interlaboratory tests, there

is little kinetic parameter information in the literature.

Moreover, its toxicity is unknown. An inorganic azide

1 Arcos Organics, Fair Lawn, NJ.
2 Pfalz & Bauer, Waterbury, CT.
3 Sigma-Aldrich, Milwaukee, WI.
4 TCI, Portland, OR.
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analog, sodium azide, is quite toxic with an LD50 (oral,

rat) = 27 mg/kg and is sometimes used as a biocide.

Organic azides are considered less toxic but these materials

must be treated with great caution. Table 2 provides the

literature-supplied kinetic values for trityl azide. Trityl

azide is commercially available (see footnote 2).

Azobisisobutyronitrile (AIBN) (CAS: 78-67-1)

Azobisisobutyronitrile, commercially available as

DuPont’s VAZO� 64, is another candidate. It is a well-

known blowing agent and polymerization initiator. It is a

solid with a melting temperature of 102 �C making it a

Table 1 Kinetic parameters for di-t-butyl peroxide

E/kJ mol-1 Log A/s-1 Enthalpy/kJ g-1 Order Conditions Reference

148 16.15 [28]

163 16.45 Gas phase [29]

154 15.11 DSC, mineral oil [30]

158 16.36 ARC, mineral oil, or toluene [30]

122.1 ± 2.8 11.51 ± 0.33 1.19 ± 0.02 DSC, 725 psi [31]

136 12.87 0.1 M in diesel fuel [32]

148 14.87 Neat [33]

140 13.74 Neat [34]

159.2 ± 9.9 16.3 ± 1.2 30–60% in toluene [35]

146.7 ± 7.0 15.0 ± 0 .9 30–60% in benzene [35]

158.5 16.1 1.31 ARC [36]

145.5 15.1 1.82 DSC [36]

147.3 ± 0.4 15.68 ± 0.44 1.29 0.925 ± 0.088 ARC [37]

158.2 16.15 1.19 [38]

1.335 [39]

159 In t-butyl benzene [40]

151 In toluene [41]

142 In vapor phase [41]

163 In vapor phase [42, 43]

157 In i-propyl-benzene [42, 43]

159 In t-butylbenzene [42, 43]

155 In t-butylamine [42, 43]

159.7 ± 0.58 15.94 ± 0.07 In vapor phase [44]

157.7 ± 0.63 15.71 ± 0.08 [45, 46]

138.4 ± 2.5 13.16 ± 0.31 [41]

146.7 ± 6.7 14.04 ± 0.83 [47]

161.3 ± 3.1 16.30 ± 0.39 [48]

164.5 ± 1.0 16.63 ± 0.24 In diethylketone [49]

158.4 ± 1.2 15.82 ± 0.18 [50]

152.6 ± 1.5 15.33 ± 0.13 In vapor phase [51]

160.1 ± 1.3 16.07 ± 0.14 [52]

158.1 ± 0.25 15.80 ± 0.03 1.0 Gas phase ‘‘best’’ literature average [50]

154.7 15.634 Solution [53]

163.03 15.95- [54]

157.3 ± 2.1 15.94 ± 0.34 1.0 15% in toluene [55]

1.25 ± 0.04 [56]

152.0 ± 6.1 (1.0) 20% in toluene [57]

158.2 ± 4.9 16.06 ± 0.59 1.0 ± 0.05 20% in toluene and benzene [24]

161 0.557 [58]

Values in parentheses are assumed
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good candidate for reference material for DSC, and

accelerating rate calorimeters where it is commonly tested

as a 10 to 15% solution in dichloromethane. Some half

dozen kinetic studies provide reasonable kinetic parameters

(see Table 3). Its one challenge is its toxicity with an LD50

(oral, rat) = 100 mg/kg (see footnote 3). AIBN is available

from several laboratory supply houses (see footnote 2, 3).

Azobenzene (CAS: 1003-33-3)

Cammenga and co-workers [22, 23] with GEFTA, the

German Thermal Analysis Society, suggested azobenzene

as a kinetic reference material. It has a reversible, endo-

thermic solid–solid isomerization transition near 120 �C

with no mass change during the transition, no side reac-

tions, and goes 100% to completion. It is confirmed first-

order with several kinetic publications in the literature (see

Table 4). Its endothermic reaction makes it particularly

safe for student study but its endothermic nature is not

often of interest to those studying kinetics. Azobenzene is

commercially available in high purity (see footnote 1, 3,

5).5 Its LD50 (oral, rat) = 1000 mg/kg (see footnote 3).

These four candidate kinetic reference materials show

simple first-order reactions. Some reference materials are

desired that have reaction order values other than m = 0 and

n = 1.

Cumene Hydroperoxide (CHP) (CAS: 80-15-9)

Cumene hydroperoxide is thought to have a half-order

reaction (n = 0.5) [24]. It is commercially available and

several detailed kinetic studies are available (Table 5).

Like DTBP, however, it is a liquid, with a boiling tem-

perature of about 101 �C and is often studied in solution. It

is not considered to be particularly toxic with LD50 (oral,

rat) = 382 mg/kg (see footnote 3). CHP is available from

several laboratory supply houses (see footnote 3, 4, 6).

Phenyltetrazolthiol (CAS: 86-93-1)

Chervin and Bodman have provided kinetic data on several

autocatalytic nitro decomposition compound reactions

including 2-benzyloxy-5-chloro-4-nitroaniline, 3-chloro-4-

nitrobenzoic acid, p-fluoronitrobenzene, and 5-chloro-2-

nitrobenzoic acid. Although these materials are candidate

reference materials, they are limited by lack of commercial

Table 2 Kinetic parameters for trityl azide

E/kJ/mol Log (Z)/s-1 H/J g-1 Order Conditions Reference

145 ± 11 17.0 ± 1.7 (1.00) ASTM E698 [20]

165.1 ± 17 19.0 ± 2.0 1.32 ± 0.30 ASTM E2041 [21]

724 ± 42 ASTM E537 [72, 73]

Values in parentheses are assumed

Table 3 Kinetic parameters for azobisisobutyonitrile (AIBN)

E/kJ mol-1 Log (Z)/s-1 H/J g-1 Order Conditions Reference

182 4% in toluene [59]

129 15.20 (1.00) [60]

121.3 ± 9.2 14.42 ± 1.3 1.02 [61]

117.9 ± 2.7 14.11 ± 1.0 1.03 [61]

99.7 13.24 (1.00) ASTM E698 [61]

128.5 ± 8.4 15.12 ± 1.1 1238 ± 78 (1.00) [62]

Values in parentheses are assumed

Table 4 Kinetic parameters for azobenzene

E/kJ mol-1 Log A/s-1 Enthalpy/J g-1 Order Conditions Reference

103.4 ± 1.6 12.2 ± 0.25 264.5 ± 1.6 [63]

103.5 ± 1 [22]

102.5 ± 0.8 11.98 ± 0.1 253.7 ± 5.4 Melt [23]

Values in parentheses are assumed

5 Spectrum Chemicals, New Brunswick, NJ.
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availability [25]. Phenyltetrazolthiol was selected as a

commercially available solid material with a melting

temperature of 145 �C (see footnote 2, 3, 4, 5, 6).6 Its

decomposition reaction is confirmed to be autocatalytic. A

single interlaboratory test provides reaction order values

for m and n as well as activation energy and pre-expo-

nential factor (Table 6) [26]. It is non-toxic with an LD50

(oral, mouse) = 1750 mg/kg (see footnote 3).

Summary

An intensive study confirms that no one material is suitable

as a kinetic reference material for all the apparatuses,

methods, or software. Nonetheless, a ‘‘short list’’ of six

candidate materials is offered from which the user may

select reference material candidates to meet a particular

need. Table 7 provides list of candidate reference materials

along with the recommended kinetic values derived from

the literature.

Input is requested from the reader for additional kinetic

information and literature citations for these materials. In

additional, the suggestions for alternative kinetic reference

material candidates are welcome.

This study is conducted under the supervision of ASTM

International Committee E27 on Hazard Potential of

Chemicals and is under the jurisdiction of Subcommittee

E27.02 chaired by Mike Oliver of Intertek. It is hoped that

this review and these results will lead to a new ASTM

International standard tentatively titled Practice for Eval-

uation of Methods for Kinetic Parameters by Thermal

Analysis [27].
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